Rare ‘Severe’ Geomagnetic Storm is Hitting Earth Right Now

SEVERE GEOMAGNETIC STORM: Arriving earlier than expected, a CME hit Earth’s magnetic field on Sept. 7th at ~2300 UT. This is, essentially, debris from Wednesday’s decade-class X9 solar flare. A rare severe G4-class geomagnetic storm is in progress as our planet’s magnetic field reverberates from the impact. Auroras have been spotted as far south as Arkansas in the United States! http://www.spaceweather.com/ Rare Severe Geomagnetic Storm A coronal mass ejection (CME) propelled into space by an X9.3 solar flare on Thursday reached our planet a little earlier than expected and helped to generate a Severe (G4) level geomagnetic storm. The solar wind climbed to above 700 km/s and the Bz component of the interplanetary magnetic field (IMF) pointed sharply south (-32nT) following the shock passage. Visual aurora is being reported across many locations at middle to high latitudes. http://www.solarham.net/

UPDATE: S1-S2 WARNING EXTENDED TO 8 SEPTEMBER/2359 UTC The S1-S2 (Minor-Moderate) solar radiation storm warning for the 10 MeV protons was extended and is now in effect until 8 September at 2359 UTC (8/1959 ET). http://www.swpc.noaa.gov/

UPDATE: CONTINUED G4 (SEVERE) GEOMAGNETIC STORMING OBSERVED G4 (Severe) geomagnetic storm levels were observed at 2350 UTC (1950 Eastern) on 07 September and again at 0151 UTC (2151 Eastern) on 08 September due to effects from a coronal mass ejection. A G3 (Strong) or greater warning continues to be in effects until 0600 UTC (02:00 Eastern) on 08 September. G4 (Severe) Geomagnetic Storm Impacts Power systems: Possible widespread voltage control problems and some protective systems will mistakenly trip out key assets from the grid. Spacecraft operations: May experience surface charging and tracking problems, corrections may be needed for orientation problems. Other systems: Induced pipeline currents affect preventive measures, HF radio propagation sporadic, satellite navigation degraded for hours, low-frequency radio navigation disrupted, and aurora has been seen as low as Alabama and northern California (typically 45° geomagnetic lat.). S2 (Moderate) Solar Radiation Storm Impacts Biological: Passengers and crew in high-flying aircraft at high latitudes may be exposed to elevated radiation risk. Satellite operations: Infrequent single-event upsets possible. Other systems: Small effects on HF propagation through the polar regions and navigation at polar cap locations possibly affected. http://www.swpc.noaa.gov/

Clips, images credit: NOAA/SWPC, NASA/SDO, ESA/HUBBLE & ESO Music credit: YouTube Audio Library Epic Unease by Kevin MacLeod is licensed under a Creative Commons Attribution licence (https://creativecommons.org/licenses/…)

Source: http://incompetech.com/music/royalty-… Artist: http://incompetech.com/

Medusa by Kevin MacLeod is licensed under a Creative Commons Attribution licence (https://creativecommons.org/licenses/…) Source: http://incompetech.com/music/royalty-… Artist: http://incompetech.com/


More Warnings About The Sun From Spaceweather Experts (8th May 2012)

Published on May 7, 2012 by

Incoming CME and G2 SOLAR STORM

Uploaded by on Feb 25, 2012

CME TARGETS EARTH, MARS: A coronal mass ejection (CME) launched from the sun on Feb. 24th appears set to hit both Earth and Mars. According to analysts at the Goddard Space Weather Lab, the cloud should reach Earth today, Feb. 26th around 1330 UT, followed by Mars two days later. Click to view the CME’s animated forecast track:



Homeland Security takes on The Carrington Event

While we worry about future threats like global warming, and present threats like Iran’s escalating nuclear program, the sun’s propensity for belching out monstrous solar flares (like the Carrington event of 1859) could almost instantly create a world without modern conveniences, or even electricity.  The sun could literally “bomb us back to the stone age”.

Imagine a world without iPhones, and you’d understand why Homeland security rates New York and Seattle the highest for likelihood of major social unrest. Humans don’t do well in the dark. DHS has taken notice.

Above: A modern solar flare recorded Dec. 5, 2006, by the X-ray Imager onboard NOAA’s GOES-13 satellite. The flare was so intense, it actually damaged the instrument that took the picture. Researchers believe Carrington’s flare was much more energetic than this one.

First some history, from NASA:

At 11:18 AM on the cloudless morning of Thursday, September 1, 1859, 33-year-old Richard Carrington—widely acknowledged to be one of England’s foremost solar astronomers—was in his well-appointed private observatory. Just as usual on every sunny day, his telescope was projecting an 11-inch-wide image of the sun on a screen, and Carrington skillfully drew the sunspots he saw.

On that morning, he was capturing the likeness of an enormous group of sunspots. Suddenly, before his eyes, two brilliant beads of blinding white light appeared over the sunspots, intensified rapidly, and became kidney-shaped. Realizing that he was witnessing something unprecedented and “being somewhat flurried by the surprise,” Carrington later wrote, “I hastily ran to call someone to witness the exhibition with me. On returning within 60 seconds, I was mortified to find that it was already much changed and enfeebled.” He and his witness watched the white spots contract to mere pinpoints and disappear.

It was 11:23 AM. Only five minutes had passed.

Just before dawn the next day, skies all over planet Earth erupted in red, green, and purple auroras so brilliant that newspapers could be read as easily as in daylight. Indeed, stunning auroras pulsated even at near tropical latitudes over Cuba, the Bahamas, Jamaica, El Salvador, and Hawaii.

Even more disconcerting, telegraph systems worldwide went haywire. Spark discharges shocked telegraph operators and set the telegraph paper on fire. Even when telegraphers disconnected the batteries powering the lines, aurora-induced electric currents in the wires still allowed messages to be transmitted.

“What Carrington saw was a white-light solar flare—a magnetic explosion on the sun,” explains David Hathaway, solar physics team lead at NASA’s Marshall Space Flight Center in Huntsville, Alabama.


We’ve discussed before at WUWT what might happen if a Carrington Class solar flare induced Geomagnetic storm happened today. From my view, it is not a matter of if, but when.

The likely outcome is a broad scale collapse of power grids, frying of satellites, and collapse of our delicate silicon based microelectronics networks. Fortunately, we may have enough warning to shutdown everything ahead of time to minimize damage, but will we do anything about it?

The Department of Homeland Security has created this report on the issue, I’ve posted excerpts below.



Over the last six years, natural hazards have caused catastrophic consequences across the globe. Tsunamis, hurricanes, flooding, earthquakes, and volcanic eruptions have led to hundreds of thousands of fatalities and billions of dollars in economic costs. Geomagnetic storms—a type of space weather—are much less frequent, but have the potential to cause damage across the globe with a single event. In the past, geomagnetic storms have disrupted space-based assets as well as terrestrial assets such as electric power transmission networks.

Extra-high-voltage (EHV) transformers and transmission lines—built to increase the reliability of electric power systems in cases of terrestrial hazards—are particularly vulnerable to geomagnetically induced currents (GICs) caused by the disturbance of Earth‘s geomagnetic field. The simultaneous loss of these assets could cause a voltage collapse and lead to cascading power outages. As a natural event whose effects are exacerbated by economic and technological developments, geomagnetic storms pose a systemic risk that requires both domestic and international policy-driven actions.

As part of the OECD Future Global Shocks project, this case study on geomagnetic storms was undertaken to identify the strengths, weaknesses, and gaps in current international risk management practices. The literature on geomagnetic storm risk assessments indicates that the state of the art for assessing the security risk from this type of event is still inchoate. There are examples of analyses that describe threat, vulnerability, and consequence, but they are not integrated, primarily because of the weakness in the threat analysis. The lack of valid risk assessments has limited risk mitigation efforts in many critical infrastructure sectors, as it is difficult to demonstrate the utility of investing in either hardening or operational mitigation efforts, especially if these investments reduce time and money spent in preparing for more common risks.

To explore the risk to the international community, this report presents a platform to discuss the risk of geomagnetic storms by describing a worst reasonable scenario and its risk factors. Our analysis identifies areas with EHV assets that are in vulnerable locations due to latitude and ground conductivity, and examines the first- and second-order consequences of an extreme storm, highlighting those consequences with an international impact such as scarcity of surplus EHV transformers and satellite communication signal degradation. In addition to exploring the expected economic consequences of a geomagnetic storm event, the report also assessed psychological consequence in the form of social unrest, behavioral changes and social vulnerability.

The potential for international consequences if an extreme event occurs are high, although the severity of those consequences can be mitigated if the international community takes certain actions in advance, such as investing in additional geomagnetic storm warning systems.

Geomagnetic storms can be categorized as a global shock for several reasons: the effects of an extreme storm will be felt on multiple continents; the resulting damage to electric power transmission will require international cooperation to address; and the economic costs of a lengthy power outage will affect economies around the world. As a global shock event, a severe geomagnetic storm, although unlikely, could lead to major consequences for OECD governments.


I found this graphic in the report interesting, it suggests that New York, New England, and Seattle are the worst places to be in a Carrington type event. “Get outta Dodge” takes on a  whole new meaning due to the social unrest that is likely:




The consequences of an extreme geomagnetic storm certainly would be severe at the local and national levels. The failure of transnational electric power systems would set off a series of cascading effects, including the disruption of government operations. The potential for international consequences if an extreme event occurs are high, although the severity of those consequences can be mitigated if the international community takes certain actions in advance. In particular, recommendations 1 through 3 provide low-cost mitigation mechanisms the international community can pursue to manage the international risks posed by an extreme geomagnetic storm.

1. The international community should mitigate against the risk of a single point of failure in the current space weather warning and alert system.

The investments that some nations have made in warning systems provide a valuable tool in helping all nations lower the risk of such catastrophic consequences. Today, the ACE satellite represents a critical possible point of failure in the global geomagnetic storm alert and monitoring network. The international community is relying on the United States of America to replace ACE. Although funds have been proposed in the FY11 U.S. Department of Commerce budget to fund an ACE replacement, DISCVR, the international community should carefully consider investing in additional satellite resources to complement the ACE replacement‘s planned CME directional detection capabilities.

2. The international community should improve the current geomagnetic storm warning and alert system.

The efforts to date fostered under ISES, and those of the SWPC in particular, are laudable. But, significant room for improvement remains in the international geomagnetic storm warning and alert infrastructure. First, understanding the consequences of geomagnetic storms requires a greater understanding of the ground induced currents resulting from those storms. Greater investment in magnetometers worldwide and integration of the resulting data would improve the SWPCs ability to assess storm severity.

The international geomagnetic storm alerting and warning community currently uses a 5- level scale to communicate the severity of an impending geomagnetic storm. This scale lacks sufficient granularity at the high end to provide useful tactical guidance to geomagnetic storm alerting and warning information customers. As consumers of space weather forecasting services, the electric power industry would benefit from greater granularity differentiating between severe and extreme geomagnetic storms for tailored operational mitigation measures.

3. Electricity-generating companies should be encouraged to harden high-voltage transformers connecting major power generating assets to electric grids.

Even with warning and alert procedures in place, operational mitigations may be overwhelmed by a sufficiently large storm. Hardening all critical infrastructures against geomagnetic storms is neither economically cost-effective nor technically possible. Hardening high-voltage transmission lines with transmission line series capacitors and the transformers connected to these lines through the installation of neutral-blocking capacitors is possible. But, doing so for all utilities supporting 345 MV and above would prove economically prohibitive (Molinski, 2000). For instance, since the 1989 Quebec electricity outage, Hydro-Quebec has spent more than $1.2 billion on transmission line series capacitors (Government of Canada, 2002). Although hardening all high-voltage transmission lines and transformers is not likely an economically viable strategy, OECD member governments should consider encouraging electricity generation companies and publicly owned utilities to harden transformers connecting critical electricity generation facilities to their respective electrical grids. Ensuring the survival of these high-voltage transformers in the event of an extreme geomagnetic storm will facilitate faster restoration of national electrical grids and remove part of the likely demand for replacement high-voltage transformers in an extreme geomagnetic storm scenario.

4. OECD members should define an allocation process for replacement high-voltage transformers in the event of increased international demand following an extreme geomagnetic storm.

As discussed above, the major international aspects from such an event are likely to be competition for limited resources necessary for recovery of electric power transmission capabilities. Joint planning, therefore, is a clear necessity. The international community would be wise to establish a framework or at least a forum for discussing various mechanisms for prioritization of needs in a competitive environment. Willingness to cooperate post-crisis, however, will depend in many ways on the individual nations‘ policies and planning prior to the crisis, and likely anticipated demands from consumers, both individual and corporate. If one nation invests nothing in warning, emergency procedures, and exercises, for example, it will have difficulty arguing that it should be first in line to receive replacement transformers after a disaster strikes.

Similarly, the international community should have a common understanding of how and when to communicate the possibility of catastrophic effects from an extreme geomagnetic storm prior as an immediate alert. Public panic and unrest can be caused or exacerbated by conflicting or inaccurate information. Clear communications are facilitated by plans and international understanding of roles and responsibilities that have been established prior to an emergency.

To ensure that each participating nation participates to a degree to support such an international partnership, it may be helpful to conduct a more thorough risk assessment. The assessment included in this report is based largely on existing data that have severe limitations and assumptions where there are no data. There are many aspects of the scenario presented here that could be improved through simulation, exercises, and additional analysis of operational procedures. The physical aspects of geomagnetic storms are relatively well known. The reaction of infrastructure operators, the public, and government leaders are more uncertain. These require more thorough understanding so that appropriate incentives can be developed for optimum policy development and implementation.

5. National governments should conduct mission disruption assessments.

The critical infrastructure interdependence analysis included in this report indicates a wide range of critical infrastructure sectors and sub-sectors would suffer second-order consequences stemming from the first-order consequences of an extreme geomagnetic storm. This analysis identifies eight critical infrastructure sectors and sub-sectors likely to experience first-order disruptions as a result of an extreme geomagnetic storm:

1. Communications (Satellite)
2. Communications (Wireline)
3. Energy (Electric Power)
4. Information Technology
5. Transportation (Aviation)
6. Transportation (Mass Transit)
7. Transportation (Pipeline)
8. Transportation (Rail)

As described starting on page 27, disruptions to three of these critical infrastructures would drive second-order disruptions to other critical infrastructures. For example, an extreme geomagnetic storm would result in widespread outages in the electric grids of the U.S.A. and Canada, in turn driving second-order disruptions to 20 other critical infrastructure sectors and sub-sectors (using U.S. DHS definitions for critical infrastructure sectors and sub-sectors). The extreme geomagnetic storm described in the scenario also would drive similar widespread electricity outages in Western Europe and Scandinavia, with second-order consequences similar to those suffered in the U.S. and Canada likely. The scale of these second-order consequences will vary from country to country, depending on a range of factors such as domestic legislation dictating back-up power requirements for hospitals.

The potential for cascading effects on critical infrastructure stemming from an extreme geomagnetic storm means OECD member governments should carefully consider conducting formal risk assessments in at least two areas. First, at a minimum, OECD members should conduct critical infrastructure dependence exercises determining the cascading effects of the loss of electric power. In addition to providing insight into the consequences stemming from an extreme geomagnetic storm, this form of risk analysis will also be applicable to other hazards that could interrupt electricity supplies. Second, OECD member governments should conduct assessments evaluating their dependence on space-based assets for continuity of government. An extreme geomagnetic storm could result in both short- and longer-term disruptions to space-based assets leveraged by OECD member governments for communications, navigation, and information technology.

6. The international community needs a commonly applied methodology to evaluate social vulnerability.

The international community lacks a commonly accepted methodology to assess social vulnerability across national lines. With increasing interest in the implications of social unrest as a global shock, the OECD should take a leading role in facilitating the development of methodology that could be applied internationally. The analysis in this report uses the University of South Carolina Social Vulnerability Index, which is designed for analysis within the United States. This has provided useful insight into the contributors to social vulnerability and comparative analysis for prioritization efforts. To compare similar phenomena across national boundaries, the international community would need to overcome challenges of inconsistent population area definitions, internationally comparable socio-economic factors, and political considerations that allow for application to a variety of types of government, emergency management, and hazard mitigation. The benefits would be a more robust approach to comparing a wide variety of hazard risks to nations and populations across the globe.


Huge M8.6 Flare & Earth Directed CME / Solar Watch Jan 23, 2012

Uploaded by on Jan 23, 2012

Huge M8.7 Flare: A solar flare reaching M8.7 was generated by Active Region 11402 at 03:59 UTC Monday morning. R2 Radio Blackout, 100 MeV Proton Spike and 10cm Radio Burst resulted. As well as a 10cm Radio Burst (TenFlare) which lasted 19 minutes was also reported.
A Full-Halo Coronal Mass Ejection (CME) followed immediately after this event, with components appearing to be Earth directed. The main bulk of the incoming plasma cloud appears to be directed above the Earth however impact is estimated to arrive during Jan 26-27.

G1 Class Geomagnetic Storm has subsided while solar winds plummet under 300 km/s. Aurora may still possible but only at very high latitudes.

Earthquake Forecasting Channel
Earthquake Reporting Channel
solarwatcher website
Soho Website
Solar Soft website
WSA-Enlil Solar Wind Prediction
Quality Solar Website
Estimated Planetary K index information
GOES Xray Flux Data
Sunspot Information from Solar Monitor
Quality Weather Website
Space Weather Website

Ending music used is Swords And Claws by Soundcritters

Dazzling Northern Lights brighten skies over Kansas, Michigan, Ohio, Georgia, Arkansas and Missouri

Now that had to be a sight to see in Kansas, check out all the meteors whizzing by…

Michigan October 24, 2011 – The timelapse spans 2h 20m from just after dusk to around 10:30 pm EDT.

Uploaded by on Oct 24, 2011

A surprise aurora appeared over the night skies in the Drake – Owensville area. These are a few stills put into animation to show a little bit of movement of the lights. It repeats a few times as I had to change angles on the camera.

Uploaded by on Oct 25, 2011

Here is a little time lapse from stills showing the faint aurora explode in just a few minutes to become some of the brightest aurora ever seen at such low latitudes.  Still pictures can be bought here: http://www.realclearwx.com/cpg15x/thumbnails.php?album=lastup&cat=0

Uploaded by on Oct 24, 2011

A red Aurora Borealis was seen in Cincinnati, Ohio on October 24, 2011 at around 9:30pm.

Scientists’ research warns humanity may be facing ‘vortex of death’

by Terrence Aym

  • Writing Level StarWriting Level StarWriting Level StarWriting Level StarWriting Level Star

March 22, 2011

Professor Raymond Wheeler, from the University of Kansas, at first almost stumbled into the frightening data. The connection was initially discovered by noted Russian scientist Alexander Chizhevsky during 1915: solar storms trigger conflict, wars and death. A vortex of death.

Chizhevsky found after intense research that the rise and fall of solar activity—interacting with the earth’s magnetic field—causes mass changes in human’s perspective’s, moods, emotions and behavioral patterns. All are affected by sunspots and solar flares.

Building upon the Russian scholar’s research, Wheeler applied a numerically weighted ranking system during the 1930s to separate wars and even individual battles assessing them on length and severity.

He then correlated the impressive data he’d amassed with the 11-year sunspot cycle.

The results were revealing…and horrifying.

When the 11-year solar cycle peaked, so did human unrest, uprisings, rebellions, revolutions and all-out wars between nations. It was almost as if the intense magnetic upswing directly affected the human brain and drove Mankind into deadly emotional tantrums and frenzied killing sprees.

Assaults skyrocket. Murders increase. And bloody wars and rebellions erupt with a fury across the face of the globe.

Wheeler’s research revealed the pattern spanned human history as far back as 2,500 years.

Solar cycle 22

During 1990 the solar maximum fever pitch initiated skirmishes around the world culminating with Iraq invading Kuwait and the U.S. battling back against Saddam Hussein’s army.

Then, 11 years later, the 9-11 attacks against New York and Washington, D.C were followed by two wars in quick succession: Afghanistan and again Iraq.

According to the 11-year solar cycle, as the sun entered its next active peak during late 2010 the disruptions in the earth’s magnetic field could be predicted to cause unrest, instability, uprisings, outbreaks of war, destruction and mass death once again.

Like clockwork it occurred.

Suddenly the news was filled with rising dissent rearing up in Tunisia, Egypt, Yemen, Bahrain and Saudi Arabia. It spread to Syria, Libya, Iran and China. Europe was not immune: general unrest arose in the UK and France, Greece had extended riots, Spain felt under pressure, and even the U.S. saw angry mobs rise up in the state of Wisconsin.

Magnetic madness

As the flares increase and the sun becomes more violent, expect greater violence on earth as some go mad.

The pattern is unmistakable. At key points during the solar cycle—from minimum to maximum activity—the geomagnetic field begins to intensify as it comes under bombardment. The triggers are when the activity is accelerating towards the peak, or dropping down towards the minimum.

Much research during the following 70 years has shown that the magnetic field interaction with human’s electrochemically driven brains also affects deep-rooted psychological mechanisms including creating anomalous hormonal swings and even significantly mutated brain wave activity.

The magnetic monster initiates a general mass hysteria and a degree of uncontrollable psychosis.

In other words, the world goes mad.

Solar cycle number 24: Worst possible

Solar Cycle 24 has begun. NASA and other space agencies worldwide have been warning about it. The cycle is predicted to be violent, unpredictable, and may even affect the fragile 21st earth technology.

Expected to surge as much as 50 more than the record-breaking solar cycle 23—that saw X-flares larger than ever witnesses by humans—this monster cycle is calculated to reach maximum intensity from 2011 through 2012.

It’s the worst possible solar cycle at the worst possible time. Expect more wars, more deaths, more countries toppled and populations displaced.

Ad to that grim scenario that fact that much research also has revealed that increased magnetic storms couples with the magnetic pole shift and changing core of the earth will likely lead to natural disasters such as the catastrophe that hit Japan during March 2011, and it’s a veritable witches’ brew of madness, mayhem and mass death.

The disturbing findings of Becker and Freedman

The year was 1963 when another piece of the terrifying puzzle snapped snugly into place. The picture that was forming might as well have been from the depths of hell.

Dr. Robert Becker and his colleague, Dr. Freedman, made an important—if unsettling—discovery. They determined that intense solar activity leads directly to psychotic outbreaks and mass insanity.

Who is Becker? Some far out crackpot?


Dr. Robert Becker was a pioneering researcher and leading expert in the field of biological electricity. Twice nominated for the Nobel Prize, Becker was also a full professor at the State University of New York, and a noted author.

Becker died in 2008 with a warning to the world about the approaching years of 2010 to 2012.