SHAMANIC PHYSICS (lecture by : Fred Alan Wolf)

Thu, August 14, 2014

Fred Alan Wolf (born December 3, 1934) is an American theoretical physicist specializing in quantum physics and the relationship between physics and consciousness. He is a former physics professor at San Diego State University, and has helped to popularize science on the Discovery Channel. He is the author of a number of books about physics, including Taking the Quantum Leap (1981), The Dreaming Universe (1994), Mind into Matter (2000), and Time Loops and Space Twists (2011)

Time Is an Illusion: Past, Present, and Future All Exist Now [MUST SEE VIDEO]

on 19 March, 2014 at 06:32

(Conscious Life News) “People like us, who believe in physics, know that the distinction between past, present, and future is only a stubbornly persistent illusion.” – Albert Einstein

Brian Greene, Professor of Physics and Mathematics at Columbia University, presents interesting information about the nature of space-time, including an explanation of how past, present, and future all exist in the now.

Time. We waste it, save it, kill it, make it. The world runs on it. Yet ask physicists what time actually is, and the answer might shock you: They have no idea. Even more surprising, the deep sense we have of time passing from present to past may be nothing more than an illusion. How can our understanding of something so familiar be so wrong?

In search of answers, Prof. Greene takes us on the ultimate time-traveling adventure, hurtling 50 years into the future before stepping into a wormhole to travel back to the past. Along the way, he will reveal a new way of thinking about time in which moments past, present, and future—from the reign of T. rex to the birth of your great-great-grandchildren—exist all at once. This journey will bring us all the way back to the Big Bang, where physicists think the ultimate secrets of time may be hidden. You’ll never look at your wristwatch the same way again.

The Cosmic Ray Factor of a Solar Magnetic Shutdown & Sep.10.2013 Solar Update ~ Suspicious Observers

“They Want to Blame You”  VIDEO posted below

Cosmic Rays:…

THE COSMIC RAY ARGUMENTS:… ;… ;… ;… ;… ;… ;…

WSO-Polar Fields:…
Solar Polar Fields 1966 to Now:…

How to Watch the Sun: Spaceweather 101 –
Ice Age Soon?
An Unlikely but Relevant Risk – The Solar Killshot:

They Want to Blame You – (A21CS Section 1.2)


DNA Dance ~ GRACE SPACE: Lost Tones of the Angelic Realm

The purpose of the video is best understood if PDF is read first…enjoy!


Video: GRACE SPACE: Lost Tones of the Angelic Realm

Once these fractal patterns of sound interact with your DNA, resonance is established. And once resonance is established, any scalar emitting patterns of Oneness from other humans will move you into coherence, which means whether you’re ready or not you will be sending the patterns of harmony out into the world.

Grace Space has three layers of balancing woven together. The first layer is the music, which soothes the conscious mind, keeping it from interfering with the bicameral balancing of the brain. The second layer is the isochronic solfeggio effect, used to move the brain into synchronicity, which in turn allows repatterning of a harmonious nature. The third layer is the words. Russian research in quantum physics has shown that words themselves can alter DNA, not unlike the Emoto work with words altering the patterning of water into ice crystals.


How Do Death Valley’s “Sailing Stones” Move Themselves Across the Desert?

These mysterious rocks have puzzled scientists for decades—until one geologist found the answer on his kitchen table

  • By Joseph Stromberg
  •, June 10, 2013 Subscribe

Sailing stones

(© Prisma Bildagentur AG / Alamy)

Start at the Furnace Creek visitor center in Death Valley National Park. Drive 50 miles north on pavement, then head west for another 30 miles on bone-rattling gravel roads. During the drive—which will take you four hours if you make good time—you’ll pass sand dunes, a meteor crater, narrow canyons, solitary Joshua trees and virtually no evidence of human existence whatsoever.  But soon after cresting the Cottonwood Mountains, you’ll come upon a landscape so out of place even in this geologically bizarre park that it almost seems artificial.

Racetrack Playa is a dried-up lakebed, ringed by mountains, about 3 miles long and flat as a tabletop. During summer, the cracked floor looks prehistoric under the desert sun; during winter, it’s intermittently covered by sheets of ice and dustings of snow. But the dozens of stones scattered across the playa floor are the most puzzling part of the view. Ranging from the size of a computer mouse to a microwave, each one is followed by a track etched into the dirt, like the contrail behind an airplane. Some tracks are straight and just a few feet long, while others stretch the length of a football field and curve gracefully or jut off at sharp angles.

Staring at these “sailing stones,” you’re torn between a pair of certainties that are simply not compatible: (1) these rocks appear to have moved, propelled by their own volition, across the flat playa floor, and yet (2) rocks don’t just move themselves.

“It’s very quiet out there, and it’s very open, and you tend to have the playa to yourself,” says Alan Van Valkenburg, a park ranger who has worked at Death Valley for nearly 20 years. “And the longer you stay out there, it just takes on this incredible sense of mystery.” The mystery is rooted in an extraordinary fact: No one has ever actually seen the rocks move.

Explanations for the stones’ movement have tended towards the absurd (magnetism, aliens and mysterious energy fields, for example). Some present-day visitors apparently agree—Van Valkenburg notes that stone theft is a growing problem, perhaps because of perceived special properties. “I don’t know whether people think they’re ‘magic rocks,’” he says. “But of course, as soon as you remove them from the playa, all ‘magic’ is lost.”

But if they’re not magic, what really does cause the stones to sail? In 1948, two USGS geologists named Jim McAllister and Allen Agnew set out to answer the question. They proposed that dust devils caused the strange movement, perhaps in combination with the playa’s intermittent flooding. In 1952, another geologist tested this hypothesis as directly as he knew how: He soaked a stretch of the playa and used a plane’s propeller to create powerful winds. Results were inconclusive.

In the following decades, theories drifted towards ice, which can occasionally form on the playa during the winter. During the early 1970s, a pair of geologists—Robert Sharp of Cal Tech and Dwight Carey of UCLA—attempted to settle once and for all whether ice or wind was responsible. The team visited the Racetrack twice a year and meticulously tracked the movements of 30 stones, giving them names (Karen, the largest boulder, was 700 pounds). They planted wooden stakes around the stones, surmising that if ice sheets were responsible, the ice would be frozen to the stakes, thereby immobilizing the stones. But some stones still escaped—and despite frequent visits, the pair never saw one move.

Still, ice remained the primary hypothesis for decades. John Reid, a Hampshire College professor, took student groups to the playa annually from 1987 to 1994 to study the stones. Because of the many parallel tracks, he came away convinced that they were locked together in large ice sheets that were blown by strong winds.

But Paula Messina, a geologist at San Jose State, used GPS to create a digital map of the tracks and found that most were, in fact, not parallel. Furthermore, wind-based models were thrown into doubt when researchers attempted to calculate the wind speeds necessary to move the ice sheets. The lowest figures were hundreds of miles per hour.

Enter Ralph Lorenz, a planetary scientist at Johns Hopkins University. In 2006, as part of a project with NASA, Lorenz was setting up a network of miniaturized weather stations in Death Valley. The weather is harsh enough there to serve an analogue for weather conditions on Mars. But then he discovered the sailing stones. “I was intrigued, as everyone is, and I had this instrumentation I was using in desert locations during the summer,” he says. “We realized we could use it during the winter and try to understand what the conditions really are at the playa.”

As the research team studied weather patterns on the Racetrack, they also looked for rocks that seemed to move on their own in other environments. Scanning the scientific literature, Lorenz learned that the buoyancy of ice helped float boulders onto arctic tidal beaches, creating barricades along the shore. The scientists began putting this idea together what they saw on the Racetrack. “We saw one instance where there was a rock trail and it looked like it hit another rock and bounced, but the trail didn’t go all the way up to other the rock, like it was repelled somehow,” says Lorenz. “We thought if there was a collar of ice around the rock, then it might be easy to imagine why it might bounce.”

Eventually, Lorenz employed a tried-and-true method for testing his nascent idea: the kitchen-table experiment. “I took a small rock, and put it in a piece of Tupperware, and filled it with water so there was an inch of water with a bit of the rock sticking out,” he says. “I put it in the freezer, and that then gave me a slab of ice with a rock sticking out of it.” He flipped the rock-ice hybrid upside down and floated it in a tray of water with sand on the bottom. By merely blowing gently on the ice, he realized, he could send the embedded rock gliding across the tray, scraping a trail in the sand as it moved. After decades of theoretical calculations by countless scientists, the answer seemed to be sitting on his tabletop.

Lorenz and his team presented their new model in a 2011 paper. “Basically, a slab of ice forms around a rock, and the liquid level changes so that the rock gets floated out of the mud,” he explains. “It’s a small floating ice sheet which happens to have a keel facing down that can dig a trail in the soft mud.” Calculations show that, in this scenario, the ice causes virtually no friction on the water, so the stones are able to glide with just a slight breeze. The team argues that their model accounts for the movement far better than any other, since it doesn’t require massive wind speeds or enormous ice sheets.

Still, says Ranger Van Valkenburg, most visitors to the Racetrack seem to resist this concrete explanation for such a peculiar phenomenon. “People always ask, ‘what do you think causes them to move?’ But if you try to explain, they don’t always want to hear the answers,” he says. “People like a mystery—they like an unanswered question.”

In a way, though, Lorenz’ physical explanation really need not diminish the feeling of awe the sailing stones bring about—it can heighten it. You can get a sense of it by sitting at the playa and imagining the perpetual sailing of the stones over time, stretching into millennia. As human societies rise and fall, and as cities are constructed and then left to disintegrate, the stones will glide gradually around their playa, turning back and forth. Frozen in ice and nudged by the slightest of breezes, they will endlessly carve mysterious, zigzagging paths into the hard flat ground.

    Subscribe now for more of Smithsonian’s coverage on history, science and nature.

Susan Joy Rennison ~ Veritas Radio, Part 1

Mel Fabregas at Veritas Radio
Space Weather:
Implications for Earth and Humankind

May 2013


Part I

Part II – members only

S y n o p s i s

The material of tonight’s interview is so important that our special guest has granted an extra segment. In 3 hours we will discuss the new phenomena of space weather driving massive evolutionary change. In 2006, Susan Joy Rennison wrote a book titled Tuning the Diamonds: Electromagnetism & Spiritual Evolution, because she realized that modern Mayan elders were trying to point out that the citizens of planet earth were entering a new world age dominated by aether or space. The basic premise of her research was that the dramatic increase and impact of space weather was the predicted arrival.  

Today, things have moved on considerably and geoscientists worldwide are adamant that our planet is experiencing a “global energy leap” and the inevitable consequence will be more mega-disasters. World governments have been warned that there is a new need for disaster preparedness and there is now a new sense of urgency.

Even Lloyd’s of London, The world’s leading insurance company providing specialist insurance services to businesses in over 200 countries and territories, have declared:  “A major space weather event in the approaching solar maximum could cause widespread disruption for unprepared businesses. Lloyd’s 360 space weather report produced by Lloyd’s and RAL space, aims to increase awareness of space weather as a global risk. In this 3-hour interview, Susan Joy Rennison offers unique perspective based on the integration of science, metaphysics and ancient knowledge.

B i o

For over 30 years, Susan Joy Rennison has explored the connections and interface between science and spirituality. After graduating from a British University (Liverpool) with an honours degree in Physics and Geophysics, her early career was as a software analyst and software designer for mainframe computers, her affinity for analysis and problem solving, were accompanied by her project management skills. These abilities blended with her thirst for knowledge in the nature of human reality, accumulated in her deep discernment and insight.

Ms. Rennison is a dedicated and thorough researcher. Her open mind allows her to see, compare and contrast information from a broad spectrum of knowledge and find the intersections that connect them. Tuning the Diamonds – Electromagnetism & Spiritual Evolution is the first book written by Ms. Rennison and it fully demonstrates her talents, for it is a powerful and thought-provoking exploration into the field of consciousness. Ms. Rennison now devotes her time to assisting others on their personal path of evolution. For groups spanning the general public, academic forums, classes and seminars, and scientific conferences and symposia, Ms. Rennison offers her services as a speaker and specialist in the fields of Space Weather, physics, geomagnetism and human consciousness.


Awake and Aware 2013 – Panel Discussion on Time Travel, Future Probabilities, Holographic Multi-Dimensional Reality and more!

Fascinating discussion on time travel technology’s past, present and future; time shifts, time lines and the overall nature of our rapidly changing reality from a scientific and meta-physicial perspective. Kerry brought together a diverse group of scientists, physicists, historians, cosmologists, and initiatives for a lively discussion.

12 Panel members Arthur Nueman/Henry Deacon, Sean David Morton, Laura Eisenhower, Richard Hoagland, Jordan Maxwell, David Wilcock, David Farman, George Green, Alan Steinfeld, Preston Nichols, Anthony Sanchez and Steven D. Kelly

Published on Apr 9, 2013


The Awake and Aware 2013 Panel Discussion.

For more videos (coming soon!) go to

Science Mythology, The Fairy and the Vacuum

It’s been said by whistleblowers from the science community that outer space is more like an ocean, full of life…

Published on Mar 23, 2013

Paul MuirPaul Muir

Science mythology discussed in relation to ancient concepts.This is my start to highlight errors in science

Dan Winter Interview (Physics, Kundalini Awakening, Ancestors, Chakras, Etc.)

Published on Nov 3, 2012


Dan Winter is most known as a teacher of Sacred Geometry and Coherent
Emotion. His invention’s discovered the harmonic content of compassion in
electrocardiography (EKG) and bliss is essential in physics and spirituality .
Mr. Winter teaches that the hygiene for bliss – creates fractal conditions (the
sacred) defining the charge field which ignites and matures DNA
into BLISS, which connects us to everything and can be proven. Mr.
Winters dedicated his life to teaching this concept in lecutres, serminars – with
web presence (5 languages), 3 books, films and DVD’s.

His message is simple- the coherence in the aura field – generated by fractal
compression – called the KA in Ancient Egypt (or Kemet)- is what creates your
vehicle for memory into death and the lucid dream. This immortalizing
potential in the charge created by blood on fire with bliss – is the real message
of ancient religion – the real physics of the grail – and the essential good news
at a time when the solar wind can only be steered by Sun God’s. . Therefore,
redefining pure intention – as the perfection of coherence resulting from
fractality – not only makes the physics of bliss measurable and teachable –
but actually a loving gentle story of the Sun inviting us home. Here is a link to dan winter’s websites=


Note: Even tho the byproduct of nuclear fission is highly toxic radioactive waste, the justification has always been nuclear “fusion” was impossible…the science presented too many obstacles to overcome with present day technology. Poppycock! Wonder how many cold fusion inventions have been suppressed, absconded then shelved by the NRC and oil industry’s combined?

CASE-COLD FUSION.jpg (66498 bytes)








Jeremy Rys – Hour 1 – Alien Scientist, New Discoveries & 9/11

January 13, 2013
Jeremy Rys is a physicist, researcher and media producer who runs the website Alien Scientist as well as the popular Youtube channel that puts forth a rational approach to Fringe Science, Aliens, and Conspiracy Theories. In the first hour, we’ll discuss resources and sustainability. Jeremy explains how nature will sort out what we don’t. Then, we’ll get into government black op programs and technology. We’ll also discuss recent news that physicists have created a quantum gas capable of reaching temperatures below absolute zero, paving the way for future quantum inventions. In hour two, we touch upon what genetic enhancements may bring, the end result being something similar to the greys. That leads us into a discussion about alien abductions, UFO files and secret space programs. Later, we’ll discuss 911 as the dividing point in history.



BBC Horizon Project Poltergeist (Missing Neutrinos) – Full Documentary

Published on Apr 25, 2012

This is the story of two genuine scientific heroes. For forty years, John Bahcall and Ray Davis were engaged in a single extraordinary experiment – to find out why the Sun shines. In the end they would triumph. Davis would win the Nobel Prize and, thanks to their work, a whole new theory about how the universe is put together may have to be created.

At the heart of this story is a tiny, utterly mysterious thing called a neutrino. Trillions of them pass through your body every second, touching nothing, leaving no trace. Yet neutrinos are one of a handful of fundamental particles in the universe, essential to every atom in existence and clues to what makes the Sun work. But their ghost-like quality made trapping and understanding them immensely difficult.

What then followed was a bizarre series of experiments. They led from a vat containing 600 tons of cleaning fluid, to a vast cavern in a Japanese mountain, to a hole in the ground in Canada two kilometers deep.

What they would reveal would stun the world of science. It seems that neutrinos may be our parents. They may be the reason why everything, including us, exists.

Magnetic Fields of the Human Body and Their Functions ~ Manly P. Hall

Uploaded on Jul 1, 2011

Manly P. Hall lecture from a series of lecture about “Occult Anatomy”.

Underwater neutrino detector will be second-largest structure ever built

December 21, 2011
by Jason Major, Universe Today
Underwater neutrino detector will be second-largest structure ever built Enlarge Artist’s rendering of the KM3NeT array. Credit: Marco Kraan/Property KM3NeT Consortium
The hunt for elusive neutrinos will soon get its largest and most powerful tool yet: the enormous KM3NeT telescope, currently under development by a consortium of 40 institutions from ten European countries. Once completed KM3NeT will be the second-largest structure ever made by humans, after the Great Wall of China, and taller than the Burj Khalifa in Dubai… but submerged beneath 3,200 feet of ocean!
KM3NeT – so named because it will encompass an area of several cubic kilometers – will be composed of lengths of cable holding optical modules on the ends of long arms. These modules will stare at the sea floor beneath the Mediterranean in an attempt to detect the impacts of neutrinos traveling down from deep space. Successfully spotting neutrinos – subatomic particles that don’t interact with “normal” matter very much at all, nor have magnetic charges – will help researchers to determine which direction they originated from. That in turn will help them pinpoint distant sources of powerful radiation, like quasars and gamma-ray bursts. Only neutrinos could make it this far and this long after such events since they can pass basically unimpeded across vast cosmic distances.
Each Digital Optical Module (DOM) is a standalone sensor module with 31 3-inch PMTs in a 17-inch glass sphere.
“The only high energy particles that can come from very distant sources are neutrinos,” said Giorgio Riccobene, a physicist and staff researcher at the National Institute for Nuclear Physics. ”So by looking at them, we can probe the far and violent universe.” In effect, by looking down beneath the sea KM3NeT will allow scientists to peer outward into the Universe, deep into space as well as far back in time.

Height of the KM3NeT telescope structure compared to well-known buildings.
The optical modules dispersed along the KM3NeT array will be able to identify the light given off by muons when neutrinos pass into the sea floor. The entire structure would have thousands of the modules (which resemble large versions of the hovering training spheres used by Luke Skywalker in Star Wars.) In addition to searching for neutrinos passing through Earth, KM3NeT will also look toward the galactic center and search for the presence of neutrinos there, which would help confirm the purported existence of dark matter. More information: Read more about the KM3NeT project here. Source: Universe Today

Read more at:

Additional information:

Essential Guide to the Electric Universe – Chapter 3 Plasma

Lately with all the talk of plasma phenomenon being mistaken for UFO’s in our skys, thought it best that we get up to speed on the most common type of matter in our universe ~ plasma. The following article is from the website.

3.1  Introducing Plasma

It is known that space is filled with plasma. In fact, plasma is the most common type of matter in the universe. It is found in a wide range of places from fire, neon lights, and lightning on Earth to galactic and intergalactic space. The only reason that we are not more accustomed to plasma is that mankind lives in a thin biosphere largely made up of solids, liquids, and gases to which our senses are tuned. For example, we don’t experience fire as a plasma; we see a bright flame and feel heat. Only scientific experiments can show us that plasma is actually present in the flame.

While plasma studies may focus on a single subject such as fusion energy production, the understanding of how the Universe operates also awaits the student with a wider interest. Image credit: DOE-Princeton Plasma Physics Lab; Peter Ginter

Plasma is a collection of charged particles that responds collectively to electromagnetic forces” (from the first paragraph in Physics of the Plasma Universe, Anthony Peratt, Springer-Verlag, 1992). A plasma region may also contain a proportion of neutral atoms and molecules, as well as both charged and neutral impurities such as dust, grains and larger bodies from small rocky bodies to large planets and, of course, stars.

The defining characteristic is the presence of the free charges, that is, the ions and electrons and any charged dust particles. Their strong response to electromagnetic fields causes behavior of the plasma which is very different to the behavior of an un-ionized gas. Of course, all particles – charged and neutral – respond to a gravity field, in proportion to its local intensity.  As most of the Universe consists of plasma, locations where gravitational force dominates that of electromagnetism are relatively sparse.

Because of its unique properties, plasma is usually considered to be a phase of matter distinct from solids, liquids, and gases. It is often called the “fourth state of matter” although, as its state is universally the most common, it could be thought of as the “first” state of matter.

The chart below is commonly used to indicate how states change from a thermal point of view. The higher the temperature, the higher up the energy ladder with transitions upward and downward as indicated. However, it takes a very high thermal energy to ionize matter. There are other means as well, and an ionized state with charge imbalance can be induced and maintained at almost any temperature.

A solid such as a metal electrical cable, once it is connected in an electrical circuit with a sufficiently high electrical voltage source (battery; powerplant) will have its electrons separated from the metal nuclei, to be moved freely along the wire as a current of charged particles.

A beaker of water with a bit of metallic salt, such as sodium chloride, is readily ionized. If an electric voltage is applied via a positive and a negative wire, the hydrogen and oxygen atoms can be driven to the oppositely charged wires and evolve as the gaseous atoms they are at room temperature. Such stable, neutral states are a part of an electric universe, but this Guide will focus more on investigating the state of plasma and electric currents at larger scales, in space.

A molecular cloud of very cold gas and dust can be ionized by nearby radiating stars or cosmic rays, with the resulting ions and electrons taking on organized plasma characteristics, able to maintain charge and double layers creating charge separation and electrical fields with very large voltage differentials. Such plasma will accelerate charges and conduct them better than metals. Plasma currents can result in sheets and filamentary forms, two of the many morphologies by which the presence of plasma can be identified.

Four states or phases of matter , and the transitions between them. Note the similarity to the early Greek “primary elements” of Earth, water, air and fire. It is clear that plasma is the state with the highest energy content. Open question:  From where in space does this energy come?   Image credit: Wikimedia Commons

The proportion of ions is quantified by the degree of ionization. The degree of ionization of a plasma can vary from less than 0.01% up to 100%, but plasma behavior will occur across this entire range due to the presence of the charged particles and the charge separation typical of plasma behavior.

Plasma is sometimes referred to merely as an “ionized gas”. While technically correct, this terminology is incomplete and outdated. It is used to disguise the fact that plasma seldom behaves like a gas at all. In space it does not simply diffuse, but organizes itself into complex forms, and will not respond significantly to gravity unless local electromagnetic forces are much weaker than local gravity. Plasma is not matter in a gas state; it is matter in a plasma state.

The Sun’s ejection of huge masses of “ionized gas” (plasma) as prominences and coronal mass ejections against its own powerful gravity serves to illustrate this succinctly. The solar ‘wind’ is plasma, and consists of moving charged particles, also known as electric current. It is not a fluid, or a ‘wind’, or a ‘hot gas’, to put it in plain terms. Use of other words from fluid dynamics serves to obfuscate the reality of electric currents and plasma phenomena more powerful than gravity, around us in space, as far away as we can observe.

A coronal mass ejection discharges billions of tons of plasma into the interplanetary medium.  The Sun is the size of the white circle on the occulting disk                                   Courtesy, SOHO public imagery

3.2  Ionization

We know that space is filled with fields, a variety of particles, many of which are charged, and collections of particles in size from atoms to planets to stars and galaxies. Neutral particles — that is, atoms and molecules having the same number of protons as electrons, and neglecting anti-matter in this discussion — can be formed from oppositely charged particles. Conversely, charged particles may be formed from atoms and molecules by a process known as ionization.

If an electron – one negative charge – is separated from an atom, then the remaining part of the atom is left with a positive charge. The separated electron and the remainder of the atom become free of each other. This process is called ionization. The positively charged remainder of the atom is called an ion. The simplest atom, hydrogen, consists of one proton (its nucleus) and one electron. If hydrogen is ionized, then the result is one free electron and one free proton. A single proton is the simplest type of ion.

If an atom heavier than hydrogen is ionized, then it can lose one or more electrons. The positive charge on the ion will be equal to the number of electrons that have been lost. Ionization can also occur with molecules. It can also arise from adding an electron to a neutral atom or molecule, resulting in a negative ion. Dust particles in space are often charged, and the study of the physics of dusty plasmas is a subject of research in many universities today. Energy is required to separate atoms into electrons and ions — see the chart below.

First ionization energy versus elements’ atomic numbers. Image credit: Wikimedia Commons, edited to add temperatures along the right axis

Notice the repetitive pattern of the chart: an alkali metal has a relatively low ionization energy or temperature (easy to ionize). As you move to the right, increasing the atomic number – the number of protons in the nucleus of the atom – the energy required to ionize each ‘heavier’ atom increases. It peaks at the next “noble gas” atom, followed by a drop at the next higher atomic number, which will be a metal again. Then the pattern repeats.

It is interesting to note that hydrogen, the lightest element, is considered a ‘metal’ in this electric and chemical context, because it has a single electron which it readily “gives up” in its outer (and only) electron orbital. Common terminology in astronomy, in the context of the component elements in stars, is that hydrogen and helium are the ‘gases’ and all the other elements present are collectively termed ‘metals’.

3.3  Initiating and Maintaining Ionization

The energy to initiate and maintain ionization can be kinetic energy from collisions between energetic particles (sufficiently high temperature), or from sufficiently intense radiation. Average random kinetic energy of particles is routinely expressed as temperature, and in some very high velocity applications as electron-volts (eV). To convert temperature in kelvins (K) to eV, divide K by 11604.5. Conversely, multiply a value in eV by that number to get the thermal equivalent temperature in K.

The chart above represents the ionization energy required to strip the first, outermost electron from an atom or molecule. Subsequent electrons are more tightly bound to the nucleus and their ionization requires even higher energies. Several levels of electrons may be stripped from atoms in extremely energetic environments like those found in and near stars and galactic jets.  Importance: These energetic plasmas are important sources of electrons and ions which can be accelerated to extremely high velocities, sources of cosmic rays and synchrotron radiation at many wavelengths. Cosmic ray links to cloud cover patterns affecting our global climate are reported in Henrik Svensmark’s book, The Chilling Stars.

Temperature is a measure of how much random kinetic energy the particles have, which is related to the rate of particle collisions and how fast they are moving. The temperature affects the degree of plasma ionization. Electric fields aligned (parallel) with local magnetic fields (“force-free” condition) can form in plasma. Particles accelerated in field-aligned conditions tend to move in parallel, not randomly, and consequently undergo relatively few collisions. The conversion of particle trajectories from random to parallel is called “dethermalization”. They are said to have a lower “temperature” as a result. Analogy: think of the vehicular motion in a “destruction derby” as “hot”, collision-prone random traffic, and freeway vehicular movement in lanes as “cool”, low-collision, parallel aligned traffic.

In a collision between an electron and an atom, ionization will occur if the energy of the electron (the electron temperature) is greater than the ionization energy of the atom. Equally, if an electron collides with an ion, it will not recombine if the electron has enough energy. One can visualize this as the electron’s having a velocity greater than the escape velocity of the ion, so it is not captured in an orbit around the ion.

simple diagram of the releasing of an electron to ionize a neutral atom

Electron temperatures in space plasmas can be in the range of hundreds to millions of kelvins. Plasmas can therefore be effective at maintaining their ionized state. A charge-separated state is normal in space plasmas.

Other sources of ionization energy include high-energy cosmic rays arriving from other regions, high-energy or “ionizing” radiation such as intense ultraviolet light incident upon gas or weakly ionized plasma from nearby stars, an encounter between a plasma region and a neutral gas region in which the relative velocity of the encounter exceeds the Critical Ionization Velocity (CIV) (Hannes Alfvén, Collision between a nonionized gas and a magnetized plasma, Rev. Mod. Phys., vol. 32, p. 710, 1960) or energetic radiative processes created within the plasma itself.

Highly energetic processes are observed in nebula NGC 3603: blue supergiant Sher 25 with toroidal ring and bipolar jets, upper center; arc and glow mode plasma discharges as emission nebula (yellow-white areas); clustered hot blue Wolf-Rayet and young O-type stars, with electric filaments and sheets throughout the dusty plasma regions of the nebula. Image credit: W. Brandner (JPL/IPAC), E. Grebel (U. of Washington), You-Hua Chou (U. of Illinois, Urbana-Champaign), and NASA Hubble Space Telescope

In Big Bang cosmology, it is thought that there is not enough energy in the Universe to have created and maintained significant numbers of “loose” ions and electrons through ionization, and therefore they cannot exist. On the other hand, whenever ions and electrons combine into atoms, energy is given off. In the Big Bang Model, protons and electrons are thought to have been created before atoms, so an enormous amount of energy must have been released during the formation of the atoms in the Universe. It seems possible that if the Big Bang Model is correct, then this energy would still be available to re-ionize large numbers of atoms. Alternatively, it seems possible that not all protons and electrons combined into atoms after the Big Bang.

Note that the Electric Model does not rely on the Big Bang Model. The Electric Model simply says that we detect ions and electrons everywhere we have looked; so they do exist, probably in large numbers. Telescopes which “see” in high energy photons, such as Chandra (X-ray) and EIT, Extreme Ultraviolet Imaging Telescope on the SOHO solar observation spacecraft, attest to the presence of ionizing energy sources in the Universe, near and far. To suggest that mobile ions and electrons can’t exist in large numbers because, theoretically, there isn’t enough energy to have created them is as erroneous as arguing that the Universe can’t exist for the same reason.

3.4  Plasma Research

Norwegian scientist Kristian Birkeland (1867-1917) with his Terella (“Little Earth), an evacuated electromagnetic plasma simulator, circa 1904

Although plasma may not be common in Earth’s biosphere, it is seen in lightning in its many forms, the northern and southern auroras, sparks of static electricity, spark plug igniters, flames of all sorts (see Chapter 2, ¶2.6), in vacuum tubes (valves), in electric arc welding, electric arc furnaces, electric discharge machining, plasma torches for toxic waste disposal, and neon and other fluorescent lighting tubes and bulbs.

Plasma behavior has been studied extensively in laboratory experiments for over 100 years. There is a large body of published research on plasma behavior by various laboratories and professional organizations, including the Institute of Electrical and Electronics Engineers (IEEE), which is the largest technical professional organization in the world today. The IEEE publishes a journal, Transactions on Plasma Science.

We will be relying on much of this research when explaining plasma behavior in the rest of this Guide. One point to bear in mind is that plasma behavior has been shown to be scalable over many orders of magnitude. That is, we can test small-scale examples of plasma in the laboratory and know that the observable results can be scaled up to the dimensions necessary to explain plasma behavior in space.

Experimental plasma vacuum chamber in Dr. Paul Bellan’s Plasma Physics Group lab at the California Institute of Technology, USA; circa 2008. Image credit: Cal Tech

 3.5  Plasma and Gases

Due to the presence of its charged particles, that is, ions, electrons, and charged dust particles, cosmic plasma behaves in a fundamentally different way from a neutral gas in the presence of electromagnetic fields.

Electromagnetic forces will cause charged particles to move differently from neutral atoms. Complex behavior of the plasma can result from collective movements of this kind.

A significant behavioral characteristic is plasma’s ability to form large-scale cells and filaments. In fact, that is why plasma is so named, due to its almost life-like behavior and similarities to cell-containing blood plasma.

The cellularization of plasma makes it difficult to model accurately. The use of the term ‘ionized gas’ is misleading because it suggests that plasma behavior can be modeled in terms of gas behavior, or fluid dynamics. It cannot except in certain simple conditions.

Alfvén and Arrhenius in 1973 wrote in Evolution of the Solar System:

“The basic difference [of approaches to modeling] is to some extent illustrated by the terms ionized gas and plasma which, although in reality synonymous, convey different general notions. The first term gives an impression of a medium that is basically similar to a gas, especially the atmospheric gas we are most familiar with. In contrast to this, a plasma, particularly a fully ionized magnetized plasma, is a medium with basically different properties.”

3.6  Conduction of electricity

Plasma contains dissociated charged particles which can move freely. Remembering that, by definition, moving charges constitute a current, we can see that plasma can conduct electricity. In fact, as plasma contains both free ions and free electrons, electricity can be conducted by either or both types of charge.

By comparison, conduction in a metal is entirely due to the movement of free electrons because the ions are bound into the crystal lattice. This means plasma is an even more efficient conductor than metals, as both the electrons and their corresponding ions are considered free to move under applied forces.

The efficiency of plasma conduction in compact fluorescent lights has rapidly replaced most metal filament (resistance heating) light sources

3.7  Electrical Resistance of Plasmas

In the Gravity Model, plasma is often assumed for simplicity to be a perfect conductor with zero resistance. However, all plasmas have a small but nonzero resistance. This is fundamental to a complete understanding of electricity in space. Because plasma has a small nonzero resistance, it is able to support weak electric fields without short-circuiting.

The electrical conductivity of a material is determined by two factors: the density of the population of available charge carriers (the ions and electrons) in the material and the mobility (freedom of movement) of these carriers.

In space plasma, the mobility of the charge carriers is extremely high because, due to the very low overall particle density and generally low ion temperatures, they experience very few collisions with other particles. On the other hand, the density of available charge carriers is also very low, which limits the capacity of the plasma to carry the current.

Electrical resistance in plasma, which depends on the inverse of the product of the charge mobility and the charge density, therefore has a small but nonzero value.

Because a magnetic field forces charged particles moving across the field to change direction, the resistance across a magnetic field is effectively much higher than the resistance in the direction of the magnetic field. This becomes important when looking at the behavior of electric currents in plasma.

Although plasma is a very good conductor, it is not a perfect conductor, or superconductor.

3.8  Creation of Charge Differences

Over a large enough volume, plasma tends to have the same number of positive and negative charges because any charge imbalance is readily neutralized by the movement of the high-energy electrons. So the question arises, how can differently charged regions exist, if plasma is such a good conductor and tends to neutralize itself quickly?

On a small scale, of the order of tens of meters in a space plasma, natural variations will occur as a result of random variations in electron movements, and these will produce small adjacent regions where neutrality is temporarily violated.

On a larger scale, positive and negative charges moving in a magnetic field will automatically be separated to some degree by the field because the field forces positive and negative charges in opposite directions. This causes differently charged regions to appear and to be maintained as long as the particles continue to move in the magnetic field.

Separated charge results in an electric field, and this causes more acceleration of ions and electrons, again in opposite directions. In other words, as soon as some small inhomogeneities are created, this rapidly leads to the start of more complex plasma behavior.

Moving through Jupiter’s intense magnetic field creates strong charge separation (voltage differential) and a resulting electrical current in a circuit of some 2 trillion watts power flowing between Io and Jupiter’s polar areas

Over all scales, the signature filamentation and cellularization behavior of plasma creates thin layers where the charges are separated. Although the layers themselves are thin, they can extend over vast areas in space.


Important Things to Remember About Plasma Behavior

The essential point to bear in mind when considering space plasma is that it often behaves entirely unlike a gas. The charged particles which are the defining feature of a plasma are affected by electromagnetic fields, which the particles themselves can generate and modify.

In particular, plasma forms cells and filaments within itself, which is why it came to be called plasma, and these change the behavior of the plasma, like a feedback loop.

Plasma behavior is a little like fractal behavior. Both are complex systems arising from comparatively simple rules of behavior. Unlike fractals, though, plasma is also affected by instabilities, which add further layers of complexity.

Any theoretical or mathematical model of the Universe that does not take into account that complexity, is going to miss important aspects of the system’s behavior and fail to model it accurately.

end of Chapter 3

Active galaxy M87 in the Virgo Cluster, with its 5000 light-year long electric current along a plasma filament (its “jet”), exhibiting occasional kink instabilities as bright knots. Image credit: Space Telescope Institute, Hubble/NASA

Electric Universe 2013: My Skype call w/the Thunderbolts & Mr2

Published on Dec 1, 2012 by

The Tipping Point:…
The Thunderbolts:
Electric Universe:

Youtube: ThunderboltsProject
Also check out these youtubers:
Telluricurrent – Mr2tuff2 – TheElectricStone [playlists]


Johan Oldenkamp ~ Wholly Science ~ Red Ice Creations 29, 2012

Dr. Johan Oldenkamp is an all-round scientific researcher, based in the Netherlands. He is the author of 25 books. The main title of his latest book is ‘Wholly Science,’ which we’ll detail in this interview. Johan will explain how science and religion do not offer genuine insights into the nature of our reality, only descriptions of all phenomena. The reason that both the universities and the churches offer misguidance is the artificial division between physics and metaphysics. He distinguishes the difference between source, proto and shadow worlds. Johan also covers the source code, yin yang, the primary 4 sources of the universe and 13 tones of creation. We briefly touch upon 2012 incoming energies and manifestations. In the second hour, we discuss how technology is viewed within Wholly Science. Then, we’ll discuss the body’s feedback system and caring for our body temple. Johan will talk about the cons of quantum physics and the wave particle duality, which he says is part of the shadow. We end on an interesting discovery he made at the Giza Plateau.



Science’s Looming ‘Tipping Point’

It is essential in these exuberant times to pay critical attention to both the observational constraints and to the basic mathematical laws, with a clear sense of what is solid theory and what is only unsupported speculation. This seeming platitude is offered here without jest, because at the present time there are ‘theories’ – scenarios sometimes quite detailed – seriously and often passionately held, for almost every exotic astronomical object that is not resolved in the telescope. In contrast, the one star that can be properly resolved – the pedestrian Sun – exhibits a variety of phenomena that defy contemporary theoretical understanding.
Eugene N. Parker

A ‘tipping point’ in science is supposed to happen when the weight of evidence against a theory tips the balance of opinion against it. But we are dazzled in this space age by computer-generated ‘virtual reality’ and the sheer technological brilliance of applied science. So it can come as a surprise to be told that modern theoretical science is in crisis. Today’s inverted science pyramid rests on the mathematics of imaginary particles and energy described by an acausal quantum theory that no one can explain. Occasionally, the more candid scientists admit they don’t understand basic phenomena like mass, gravity, magnetism, lightning, galaxies and even the Sun! So it is not surprising that planets, stars and galaxies are being discovered that ‘shouldn’t exist’ and most of the visible universe seems to be a mere impurity overwhelmed by mysterious ‘dark matter’ and ‘dark energy.’ In its role as a consensual belief system today’s ‘settled science’ is now confronted with surprising contradictions more frequently than they can be fitted to the dogmas. And because the fundamental mysteries persist unrecognized, Nobel Prizes are awarded for purely imaginary discoveries in physics. The weird nature of those discoveries should serve to warn us that science is at a tipping point of unparalleled magnitude.

Dysfunctional Science

Science is at a tipping point because, having fragmented into specialties and sub-specialties, it is no longer equipped to deal with falsifying data. The barricades of technical jargon and self-serving politics prevent the specialists from seeing what would be all too obvious from a higher vantage point. Such a system is averse to outside challenges by ‘those who transcend the conventional,’ and leading authorities feel free to ignore them. Of course, before the modern barriers went up, crucial scientific contributions were accepted from many ‘outsiders’ like William Herschel and Michael Faraday, those who “may be free of current dogmas and prejudices, able to see the world with fresh eyes.” [Albert Einstein] Few universities have shown the courage to insist on a broad and balanced picture of present knowledge or an even-handed comparison of theoretical assumptions and available alternatives. To apply such basic standards today would risk discrediting entire departments.

Dysfunctional Education

In truth we could be as far from a meaningful “theory of everything” as stone-age man was from setting foot on the Moon. Our universities foster narrow, theoretical lockstep. Essential self-correction would require the opposite, a broader horizon, with an eye to ideas and critical facts across many disciplinary boundaries. That would, in fact, mean a return to the interdisciplinary ways of natural philosophy. Knowledge should be open to criticism, and criticism should not be limited to one’s closest peers. It is one of the worst failings of modern education that students are not encouraged to cultivate critical thinking or to explore broader possibilities. Today’s ‘good student’ is asked to conform, to absorb pre-packaged knowledge much like modern fast food. But instead of certainties, we should be feeding students with doubts and mysteries, for they stimulate the imagination and motivate individual research. That is the way to achieve breakthroughs;

“Intensive and narrow scientific training will guarantee that you will never make a scientific breakthrough.. we must forge a pioneering education, whose purpose is to produce the imaginative generalists who can take us into the uncharted future.” [Root-Bernstein —Sparks of Genius]

Computer Games and the Media

Researchers today have computers to simulate almost anything they can imagine. The combination of computing power and imagination produces the ultimate computer games, a virtual world where unbridled fantasy can flourish. “You can sell anything if you dress it up correctly… You can give a result which is complete ‘garbage’ but taken out of context, reviewers can’t tell the difference,” says one astrophysicist. Harsh words? Not if you read the numerous papers where simulations are said to ‘prove’ a theory. Each ‘surprising’ discovery results in ad hoc computer models built from ‘off-the-shelf’ ideas and software that are forced to approximate what it is imagined has been discovered. Attractive computer-generated ‘artists’ impressions’ help with funding. The design of research labs revolves around simulation and visualization technology, the Large Hadron Collider (LHC) for example. So science libraries are now filled with an excess of unreadable and unread technical literature, while the distinction between nature itself and the ‘virtual worlds’ of the popular media grows increasingly blurred. In this deadly loop the virtual world gets the publicity and funding. And all the while the inspiration that attracts young minds to true discovery progressively declines.

In How Einstein Ruined Physics, Roger Schlafly, himself a PhD in Mathematics from Berkeley, writes, “Modern physics has been taken over by academic researchers who call themselves theoretical physicists but who are really doing science fiction. They are not mathematicians who prove their results with logic, and they are not scientists who test their hypotheses with experiments. They make grand claims about how their fancy formulas are going to explain how the world works, and yet they give no way of determining whether there is any validity to their ideas.”

Math ain't Physics

Mathematics is a great tool but it isn’t physics. A lucrative prize has been recently awarded to an Australian astrophysicist who encourages students to emulate him and “look at things as math problems rather than as physical problems.” This is from a person who gave us imaginary ‘dark matter’ to allow the math to match the physical problem. To his credit, Albert Einstein showed better understanding, To the extent that the laws of mathematics refer to reality, they are not true; and to the extent that they are true, they do not refer to reality.

Research Funding

Consensus science and the desperate need to publish papers in a few ‘recognized’ journals drives peer-review censorship, selective data publication, confirmatory bias, and in some cases fraud. Requests for research funding should be subject to public cross-examination. If the research cannot be explained and justified to well-educated arbitrators, drawing upon qualified criticism, what is the basis for confidence in today’s multi-billion dollar scientific adventures? “Trust us, we’re the experts,” is not acceptable. Blind trust has led to misbegotten multi-billion dollar projects like the $9 billion Large Hadron Collider and the $16 billion, 30 year long International Thermonuclear Experimental Reactor (ITER), which when viewed critically, fall far short of the scientific justification the public has every right to expect.

Cosmology as Myth

Today’s cosmology, in attempting to give us the biggest picture, competes with religion by investing in an alternative creation myth, one that shatters the observed laws of physics. The myth is called ‘the big bang’ and it makes no sense. What we observe is that matter ‘locks up’ electromagnetic energy, which manifests as mass according to E = mc2 (no hypothetical Higgs boson is required).  But we have no idea how energy can create matter (whatever that ultimately is). So we can say nothing about creation of the universe. Though it purports to explain observed phenomena, the big bang requires one to rationalize an immense field of accumulating anomalies, forcing cosmologists to devote most of their time to inventing ways around the contradictions by introducing purely theoretical constructs like dark matter, dark energy, black holes and much more. The exotic vocabulary that has emerged fails every reasonable test of Occam’s Razor. Unexpected results are met with ad hoc solutions. There is always an answer.

The big bang myth, with its bizarre portrayal of our situation in the universe, afflicts society through its hopelessness and waste of money and resources. Modern cosmology is exposed as a competing secular religion with its creationism and end of the world scenarios. Science has not yet thrown off the shackles of our misunderstood past.

Cosmology by Computer Models

One measure of a successful cosmology is its ability to predict probable new discoveries and avenues for research in other disciplines. Big Bang cosmology fails this test. Today, incessant surprise at discordant astronomical data never causes a radical rethink of basic assumptions. “Back to the drawing board” never means starting afresh. The mysteries mentioned earlier are untouched. No one reads the original papers from which dogma sprang. Surprises merely drive the science-media-funding circus to further improvised absurdities — ‘proven’ by computer models. But computer models cannot prove anything. Most are based on invalid concepts, such as treating space plasma as a magnetized gas, and have so many adjustable parameters that the models are not falsifiable. Physicists are trained to work in an intellectual vacuum. The result is a lack of real progress that is disguised by increasingly bizarre scientific headlines and promises of future success, which never arrive. Consider the decades-old pledge of limitless clean thermonuclear energy, ‘like the Sun.’ Failure to deliver has never caused any second thoughts about the Sun. But that may be a clue.

First Understand the Sun

Martin-Rees by Anne-Katrin Purkiss 2006

Martin Rees, one of the world’s most eminent astronomers, is a professor of cosmology and astrophysics at the University of Cambridge and the UK’s Astronomer Royal. In his book, New Perspectives in Astrophysical Cosmology [C.U.P. 2000] he writes, “The best understood cosmic structures are the smaller ones: the individual stars.” Nothing could be further from the truth! Not one of our own star’s features — the corona — the chromosphere — the granular photosphere — sunspots — is to be expected based on the standard thermonuclear fusion model. As new data floods in from solar probes and those focused on the Sun’s boundary with interstellar space it becomes blindingly obvious — we don’t understand the Sun. And without understanding the Sun we know nothing about the universe!

The Sun is the tipping point, the point of departure from old big bang cosmology. Rees writes in the introduction to his book, “Gravity, almost undetectable between laboratory-scale bodies, is the dominant force in astronomy and cosmology. The basic structures in our cosmic environment – stars, galaxies, and clusters of galaxies – all involve a balance between gravitational attraction and the disruptive effect of pressure or kinetic energy.” Three things stand out immediately. First, gravity is the weakest force in the universe. Second, gravity is not understood. And third, although magnetic fields are detected on the Sun and everywhere in space, there is no mention of the necessary generative electric currents in plasma, which constitutes 99.999 per cent of the visible universe! This is a doctrinaire failure to notice the obvious.

Astrophysicists have equations describing what gravity does and a meaningless hyper-geometric story about space being warped by the presence of matter. There is no thought given to the most basic problem — how matter produces the effects of mass and gravity. Nowhere in cosmology is the electrical structure of matter and the electric force, which is 39 orders of magnitude stronger than gravity, considered important. So long as we cling to mistaken and out-dated concepts we will never understand the Sun or any other star.

A New Sun Rises in the Electric Universe

There is a new cosmology poised for recognition. The Electric Universe is inspiring people of all ages. It is easy to understand. It is an expansive and inclusive science that motivates ‘garage tinkerers’ to perform their own experiments. It merges science and the humanities at a deep level. Those who know it say, “It just makes sense.” For the first time we begin to understand our existence on this fragile blue planet and our connection to the Sun and the amazing universe.

Even at this early stage in its development, the Electric Universe has been successfully predicting and explaining surprising discoveries. It is unique in the space age in that it grew from forensic investigation of the earliest astronomical references. It did not assume that the sky has always appeared like today or that the orbits of the planets can be simply retro-calculated into prehistory. The research culminated in the identification of weird prehistoric petroglyphs as faithful recordings of mighty electrical discharges in prehistoric skies. When combined with modern plasma science and recent discoveries from space probes it was evident that electricity plays a key role in celestial dynamics. This raised the issue of the electrical nature of the central body in the solar system — the Sun.

There is practically no scientific or cultural activity that is untouched by the Electric Universe, which is the hallmark of a real cosmology. The Electric Universe is based on real-world experiment and observation and not on oxymoronic ‘thought experiments’ or unfettered speculation about what might be going on unseen inside a star or in deep space. It shows more clearly what remains to be discovered and the preferred directions for future study and exploration.

A Disturbing Electrical Solar System

This interdisciplinary investigation climaxed in 2000 at a meeting in Portland, Oregon when the electrical nature of the solar system was confirmed. Such evidence had been accumulating since comet nuclei came under close scrutiny by spacecraft. But at the meeting, a leading authority in plasma science established that unusual powerful electrical activity had once involved the entire Earth. He recognized enigmatic prehistoric petroglyphs as representing evolving plasma instabilities he had seen in images from the most powerful lab-generated electrical discharges. The scientific papers announcing the discovery termed the phenomenon a ‘super-aurora,’ implying the Sun was responsible, and dated sometime about the end of the last ice age.

However, it confirmed other converging evidence that globally, ancient peoples identified certain planets with a dreadful weapon called the ‘thunderbolt of the gods.’ The many descriptions and artistic representations of these ‘thunderbolts’ showed they were high-energy plasma discharges. Those now distant planets were associated with chaos and terror on Earth. Certain planets were also depicted in a closely spaced ‘grand conjunction’ that is impossible in a gravity-only universe but was chiselled by the thousands into rock. The Sun was not responsible for the ‘super-auroras.’

The Great Day of His Wrath—John Martin

“The Great Day of His Wrath” — John Martin c. 1853

All the evidence supported an earlier analysis that we are the descendants of deeply traumatised survivors of prehistoric celestial ‘doomsday’ experiences. Those cataclysms seemed to trigger the mysterious sudden rise of the first civilizations. The events were memorialized in the early religions and prodigious architecture and monuments; and they were re-enacted in destructive wars. The mysterious stories of planetary gods battling in the heavens with thunderbolts is dismissed today without a second thought because it doesn’t fit the comforting myth of an electrically sterile, Newtonian clockwork planetary system wound up billions of years ago. Yet in the 21st century we still instinctively inflict war and senseless destruction while invoking those forgotten planetary gods. Perhaps the most important lesson from the Electric Universe is societal. Healing the compulsion to revisit doomsday-inspired insanity requires that we face the reality of our chaotic past on this planet. The implications for science, the humanities, and our future survival are profound.

An Electric Sun?

Powerful electrical exchanges between planets on eccentric orbits in the time of prehistoric humans imply an electrical mechanism at work in the solar system to swiftly restore order. Gravity, working alone, tends to increase chaos rather than restore and maintain order. Therefore the central issues are the true nature of gravity and the body central to our existence – the Sun. In the past some scientists have drawn analogies between lightning and features on the Sun. The British physicist C. E. R. Bruce wrote, “It is not coincidence that the photosphere has the appearance, the temperature and spectrum of an electric arc; it has arc characteristics because it an electric arc, or a large number of arcs in parallel.” The Italian solar astronomer Giorgio Abetti wrote, “It is likely that the problem of the dynamics of the explosions affecting the prominences will only be solved when the electrical conditions obtaining in the chromosphere and inner corona are better understood.”

Read more:


Cosmology in Crisis

Part 2

Uploaded by on Oct 9, 2008

Cosmology in Crisis Part 1

The emerging plasma universe paradigm

Plasma Cosmology Electric Universe Astronomy Astrophysics Big Bang Black Holes Plasma Focus Electricity Electrodynamics Electric Comets

Wal Thornhill David Talbott Don Scott Anthony Peratt Nikola Tesla Hannes Alfven Kristian Birkeland Phil Plait Bad Astronomy Bad Astronomer

Music by Nine Inch Nails – A Warm Place, Tangerine Dream – Love on a Real Train

David Deutsch: Chemical scum that dream of distant quasars

Uploaded by on Jan 16, 2007 Legendary scientist David Deutsch puts theoretical physics on the back burner to discuss a more urgent matter: the survival of our species. The first step toward solving global warming, he says, is to admit that we have a problem.

TEDTalks is a daily video podcast of the best talks and performances from the TED Conference, where the world’s leading thinkers and doers are invited to give the talk of their lives in 18 minutes — including speakers such as Jill Bolte Taylor, Sir Ken Robinson, Hans Rosling, Al Gore and Arthur Benjamin. TED stands for Technology, Entertainment, and Design, and TEDTalks cover these topics as well as science, business, politics and the arts. Watch the Top 10 TEDTalks on, at